• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Computer vision publications October 1, 2013 Conference Paper

Augmented Reality Binoculars

SRI International, Supun Samarasekera, Rakesh “Teddy” Kumar October 1, 2013

SRI Authors: Supun Samarasekera, Rakesh “Teddy” Kumar

Citation

Copy to clipboard


Oskiper, T., Sizintsev, M., Branzoi, V., Samarasekera, S., & Kumar, R. (2013, 1-4 October). Augmented reality binoculars. Paper presented at the IEEE International Symposium on Mixed and Augmented Reality (ISMAR’13), Adelaide, Australia.

Abstract

In this paper we present an augmented reality binocular system to allow long range high precision augmentation of live telescopic imagery with aerial and terrain based synthetic objects, vehicles, people and effects. The inserted objects must appear stable in the display and must not jitter and drift as the user pans around and examines the scene with the binoculars. The design of the system is based on using two different cameras with wide field of view, and narrow field of view lenses enclosed in a binocular shaped shell. Using the wide field of view gives us context and enables us to recover the 3D location and orientation of the binoculars much more robustly, whereas the narrow field of view is used for the actual augmentation as well as to increase precision in tracking. We present our navigation algorithm that uses the two cameras in combination with an IMU and GPS in an Extended Kalman Filter (EKF) and provides jitter free, robust and real-time pose estimation for precise augmentation. We have demonstrated successful use of our system as part of a live simulated training system for observer training, in which fixed and rotary wing aircrafts, ground vehicles, and weapon effects are combined with real world scenes.

↓ View online

Share this

Facebooktwitterlinkedinmail

2d-3d reasoning and augmented reality publications, Computer vision publications, Information & computer science publications, Publication Conference Paper

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International