• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Information & computer science publications May 1, 2014

Medium-Duration Modulation Cepstral Feature for Robust Speech Recognition

Horacio Franco, Martin Graciarena, Dimitra Vergyri

Citation

Copy to clipboard


Mitra, V., Franco, H., Graciarena, M., & Vergyri, D. (2014, 4-9 May). Medium-duration modulation cepstral feature for robust speech recognition. Paper presented at the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’14), Florence, Italy.

Abstract

Studies have shown that the performance of state-of-the-art automatic speech recognition (ASR) systems significantly deteriorate with increased noise levels and channel degradations, when compared to human speech recognition capability. Traditionally, noise-robust acoustic features are deployed to improve speech recognition performance under varying background conditions to compensate for the performance degradations. In this paper, we present the Modulation of Medium Duration Speech Amplitude (MMeDuSA) feature, which is a composite feature capturing subband speech modulations and a summary modulation. We analyze MMeDuSA’s speech recognition performance using SRI International’s DECIPHER® large vocabulary continuous speech recognition (LVCSR) system, on noise and channel degraded Levantine Arabic speech distributed through the Defense Advance Research Projects Agency (DARPA) Robust Automatic Speech Transcription (RATS) program. We also analyzed MMeDuSA’s performance against the Aurora-4 noise-and-channel degraded English corpus. Our results from all these experiments suggest that the proposed MMeDuSA feature improved recognition performance under both noisy and channel degraded conditions in almost all the recognition tasks.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International