• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications August 1, 2013

All for one: Feature combination for highly channel-degraded speech activity detection

SRI authors: Horacio Franco, Martin Graciarena

Citation

Copy to clipboard


M. Graciarena, A. Alwan, D. Ellis, H. Franco, L. Ferrer, J. H. L. Hansen, A. Janin, B. -S. Lee, Y. Lei, V. Mitra, N. Morgan, S. O. Sadjadi, T. Tsai, N. Scheffer, L. N. Tan and B. Williams, “All for one:  Feature combination for highly channel-degraded speech activity detection,” in P roc. of Interspeech, 2013, pp. 709–713.

Abstract

Speech activity detection (SAD) on channel transmissions is a critical preprocessing task for speech, speaker and language recognition or for further human analysis. This paper presents a feature combination approach to improve SAD on highly channel degraded speech as part of the Defense Advanced Research Projects Agency’s (DARPA) Robust Automatic Transcription of Speech (RATS) program. The key
contribution is the feature combination exploration of different novel SAD features based on pitch and spectro-temporal processing and the standard Mel Frequency Cepstral Coefficients (MFCC) acoustic feature. The SAD features are: (1) a GABOR feature representation, followed by a multilayer perceptron (MLP); (2) a feature that combines multiple voicing features and spectral flux measures (Combo); (3) a feature based on subband autocorrelation (SAcC) and MLP postprocessing and (4) a multiband comb-filter F0 (MBCombF0) voicing measure. We present single, pairwise and all feature combinations, show high error reductions from pairwise feature level combination over the MFCC baseline and show that the best performance is achieved by the combination of all features.

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International