• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications August 1, 2013 Conference Paper

Improving Language Identification Robustness to Highly Channel-Degraded Speech through Multiple System Fusion

SRI authors: Aaron Lawson, Martin Graciarena, Mitchell McLaren

Citation

Copy to clipboard


Lawson, A., McLaren, M., Lei, Y., Mitra, V., Scheffer, N., Ferrer, L., & Graciarena, M. (2013, August). Improving language identification robustness to highly channel-degraded speech through multiple system fusion. In INTERSPEECH (pp. 1507-1510).

Abstract

We describe a language identification system developed for robustess to noise conditions such as those encountered under the DARPA RATS program, which is focused on multi-channel audio collected in high noise conditions. Work presented here includes novel approaches to scoring iVectors, the introduction of several new acoustic and prosodic features for language identification, and discriminative file selection approaches to score calibration.  Further, we explore the use of Discrete Cosine Transforms (DCT) as a supplement to traditional context modeling with Shifted Delta Cepstrum (SDC) and fusion of multiple iVector systems based on Gaussian backends, neural networks, and adaptive Gaussian backend modeling.

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International