• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications March 1, 2017

Toward human-assisted lexical unit discovery without text resources

SRI authors: Andreas Kathol, Dimitra Vergyri, Harry Bratt

Citation

Copy to clipboard


C. Bartels, W. Wang, V. Mitra, C. Richey, A. Kathol, D. Vergyri, H. Bratt and C. Hung, “Toward human-assisted lexical unit discovery without text resources,” in Proc. SLT 2016, pp. 64-70, December 2016.

Abstract

This work addresses lexical unit discovery for languages without (usable) written resources. Previous work has addressed this problem using entirely unsupervised methodologies.  Our approach in contrast investigates the use of linguistic and speaker knowledge which are often available even if text resources are not.  We create a framework that benefits from such resources, not assuming orthographic representations and avoiding generation of word-level transcriptions.  We adapt a universal phone recognizer to the target language and use it to convert audio into a searchable phone string for lexical unit discovery via fuzzy sub-string matching.  Linguistic knowledge is used to constrain phone recognition output and to constrain lexical unit discovery on the phone recognizer output.

Target language speakers are used to assist a linguist in creating phonetic transcriptions for the adaptation of acoustic and language models, by respeaking more clearly a small portion of the target language audio.  We also explore robust features and feature transform through deep auto-encoders for better phone recognition performance.

The proposed approach achieves lexical unit discovery performance comparable to state-of-the-art zero-resource methods.  Since the system is built on phonetic recognition, discovered units are immediately interpretable.  They can be used to automatically populate a pronunciation lexicon and enable iterative improvement through additional feedback from target language speakers.

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International