• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications November 18, 2022

Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option

Aaron Lawson, Mitchell McLaren

Citation

Copy to clipboard


L. Ferrer, M. K. Nandwana, M. L. McLaren, D. Castan and A. Lawson, “Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option,” in IEEE/ACM Transactions on Audio, Speech, and Language Processing.

Abstract

The output scores of most speaker recognition systems are not directly interpretable as stand-alone values.  For this reason, a calibration step is usually performed on the scores to convert them into proper likelihood ratios (LR), which have a clear probabilistic interpretation.  The standard calibration approach transforms the system scores using a linear function trained using data selected to closely match the evaluation conditions.  This selection, though, is not feasible when the evaluation conditions are unknown. In previous work, we proposed a calibration approach for this scenario called trialbased calibration (TBC).  TBC trains a separate calibration model for each test trial using data that is dynamically selected from a candidate training set to match the conditions of the trial.  In this work, we extend the TBC method, proposing (1) a new similarity metric for selecting training data that results in significant gains over the one proposed in the original work, (2) a new option that enables the system to reject a trial when not enough matched data is available for training the calibration model, and (3) the use of regularization to improve the robustness of the calibration models trained for each trial.  We test the proposed algorithms on a development set composed of several conditions and on the FBI multi-condition speaker recognition dataset, and we demonstrate that the proposed approach reduces calibration loss to values close to 0 for most conditions when matched calibration data is available for selection and that it can reject most trials for which relevant calibration data is unavailable.

↓ Download

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}