Background: The diagnosis of posttraumatic stress disorder (PTSD) is usually based on clinical interviews or self‐report measures. Both approaches are subject to underand over‐reporting of symptoms. An objective test is lacking. We have developed a classifier of PTSD based on objective speech‐marker features that discriminate PTSD cases from controls.
Methods: Speech samples were obtained from warzone‐exposed veterans, 52 cases with PTSD and 77 controls, assessed with the Clinician‐Administered PTSD Scale. Individuals with major depressive disorder (MDD) were excluded. Audio recordings of clinical interviews were used to obtain 40,526 speech features which were input to a random forest (RF) algorithm.
Results: The selected RF used 18 speech features and the receiver operating characteristic curve had an area under the curve (AUC) of 0.954. At a probability of PTSD cut point of 0.423, Youden’s index was 0.787, and overall correct classification rate was 89.1%. The probability of PTSD was higher for markers that indicated slower, more monotonous speech, less change in tonality, and less activation. Depression symptoms, alcohol use disorder, and TBI did not meet statistical tests to be considered confounders.
Conclusions: This study demonstrates that a speech‐based algorithm can objectively differentiate PTSD cases from controls. The RF classifier had a high AUC. Further validation in an independent sample and appraisal of the classifier to identify those with MDD only compared with those with PTSD comorbid with MDD is required.
Mapping Individual to Group Level Collaboration Indicators Using Speech Data
Automatic detection of collaboration quality from the students’ speech could support teachers in monitoring group dynamics, diagnosing issues, and developing pedagogical intervention plans. To address the challenge of mapping characteristics of individuals’ speech to information about the group, we coded behavioral and learning-related indicators of collaboration at the individual level. In this work, we investigate the feasibility of predicting the quality of collaboration among a group of students working together to solve a math problem from human-labelled collaboration indicators. We use a corpus of 6th, 7th, and 8th grade students working in groups of three to solve math problems collaboratively. Researchers labelled both the group-level collaboration quality during each problem and the student-level collaboration indicators. Results using random forests reveal that the individual indicators of collaboration aid in the prediction of group collaboration quality.
Robust Speaker Recognition from Distant Speech under Real Reverberant Environments Using Speaker Embeddings
This article focuses on speaker recognition using speech acquired using a single distant or far-field microphone in an indoors environment. This study differs from the majority of speaker recognition research, which focuses on speech acquisition over short distances, such as when using a telephone handset or mobile device or far-field microphone arrays, for which beamforming can enhance distant speech signals. We use two large-scale corpora collected by retransmitting speech data in reverberant environments with multiple microphones placed at different distances. We first characterize three different speaker recognition systems ranging from a traditional universal background model (UBM) i-vector system to a state-of-the-art deep neural network (DNN) speaker embedding system with a probabilistic linear discriminant analysis (PLDA) back-end. We then assess the impact of microphone distance and placement, background noise, and loudspeaker orientation on the performance of speaker recognition system for distant speech data. We observe that the recently introduced DNN speaker embedding based systems are far more robust compared to i-vector based systems, providing a significant relative improvement of up to 54% over the baseline UBM i-vector system, and 45.5% over prior DNN-based speaker recognition technology.
Voices Obscured in Complex Environmental Settings (VOiCES) corpus
This paper introduces the Voices Obscured in Complex Environmental Settings (VOiCES) corpus, a freely available dataset under Creative Commons BY 4.0. This dataset will promote speech and signal processing research of speech recorded by far-field microphones in noisy room conditions. Publicly available speech corpora are mostly composed of isolated speech at close-range microphony. A typical approach to better represent realistic scenarios, is to convolve clean speech with noise and simulated room response for model training. Despite these efforts, model performance degrades when tested against uncurated speech in natural conditions. For this corpus, audio was recorded in furnished rooms with background noise played in conjunction with foreground speech selected from the LibriSpeech corpus. Multiple sessions were recorded in each room to accommodate for all foreground speech-background noise combinations. Audio was recorded using twelve microphones placed throughout the room, resulting in 120 hours of audio per microphone. This work is a multi-organizational effort led by SRI International and Lab41 with the intent to push forward state-of-the-art distant microphone approaches in signal processing and speech recognition.
SenSay Analytics™: A real-time speaker-state platform
Growth in voice-based applications and personalized systems has led to increasing demand for speech- analytics technologies that estimate the state of a speaker from speech. Such systems support a wide range of applications, from more traditional call-center monitoring, to health monitoring, to human-robot interactions, and more. To work seamlessly in real-world contexts, such systems must meet certain requirements, including for speed, customizability, ease of use, robustness, and live integration of both acoustic and lexical cues. This demo introduces SenSay AnalyticsTM, a platform that performs real-time speaker-state classification from spoken audio. SenSay is easily configured and is customizable to new domains, while its underlying architecture offers extensibility and scalability.
The SRI speech-based collaborative learning corpus
We introduce the SRI speech-based collaborative learning corpus, a novel collection designed for the investigation and measurement of how students collaborate together in small groups. This is a multi-speaker corpus containing high-quality audio recordings of middle school students working in groups of three to solve mathematical problems. Each student was recorded via a head-mounted noise-cancelling microphone. Each group was also recorded via a stereo microphone placed nearby. A total of 80 sessions were collected with the participation of 134 students. The average duration of a session was 20 minutes. All students spoke English; for some students, English was a second language. Sessions have been annotated with time stamps to indicate which mathematical problem the students were solving and which student was speaking. Sessions have also been hand annotated with common indicators of collaboration for each speaker (e.g., inviting others to contribute, planning) and the overall collaboration quality for each problem. The corpus will be useful to education researchers interested in collaborative learning and to speech researchers interested in children’s speech, speech analytics, and speech diarization. The corpus, both audio and annotation, will be made available to researchers.
Spoken Interaction Modeling for Automatic Assessment of Collaborative Learning
Collaborative learning is a key skill for student success, but simultaneous monitoring of multiple small groups is untenable for teachers. This study investigates whether automatic audio- based monitoring of interactions can predict collaboration quality. Data consist of hand-labeled 30-second segments from audio recordings of students as they collaborated on solving math problems. Two types of features were explored: speech activity features, which were computed at the group level; and prosodic features (pitch, energy, durational, and voice quality patterns), which were computed at the speaker level. For both feature types, normalized and unnormalized versions were investigated; the latter facilitate real-time processing applications. Results using boosting classifiers, evaluated by F-measure and accuracy, reveal that (1) both speech activity and prosody features predict quality far beyond chance using majority-class approach; (2) speech activity features are the better predictors overall, but class performance using prosody shows potential synergies; and (3) it may not be necessary to session-normalize features by speaker. These novel results have impact for educational settings, where the approach could support teachers in the monitoring of group dynamics, diagnosis of issues, and development of pedagogical intervention plans.
The SRI AVEC-2014 Evaluation System
Though depression is a common mental health problem with significant impact on human society, it often goes undetected. We explore a diverse set of features based only on spoken audio to understand which features correlate with self-reported depression scores according to the Beck depression rating scale. These features, many of which are novel for this task, include (1) estimated articulatory trajectories during speech production, (2) acoustic characteristics, (3) acoustic-phonetic characteristics and (4) prosodic features. Features are modeled using a variety of approaches, including support vector regression, a Gaussian backend and decision trees. We report results on the AVEC-2014 depression dataset and find that individual systems range from 9.18 to 11.87 in root mean squared error (RMSE), and from 7.68 to 9.99 in mean absolute error (MAE). Initial fusion brings further improvement; fusion and feature selection work is still in progress.
Lexical Stress Classification for Language Learning Using Spectral and Segmental Features
We present a system for detecting lexical stress in English words spoken by English learners. The system uses both spectral and segmental features to detect three levels of stress for each syllable in a word. The segmental features are computed on the vowels and include normalized energy, pitch, spectral tilt and duration measurements. The spectral features are computed at the frame level and are modeled by one Gaussian Mixture Model (GMM) for each stress class. These GMMs are used to obtain segmental posteriors, which are then appended to the segmental features to obtain a final set of GMMs. The segmental GMMs are used to obtain posteriors for each stress class. The system was tested on English speech from native English-speaking children and from Japanese-speaking children with variable levels of English proficiency. Our algorithm results in an error rate of approximately 13% on native data and 20%on Japanese non-native data.