• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Artificial intelligence publications May 1, 2014

An Autoencoder with Bilingual Sparse Features for Improved Statistical Machine Translation

Citation

Copy to clipboard


Zhao, B., Tam, Y. C., & Zheng, J. (2014, May). An autoencoder with bilingual sparse features for improved statistical machine translation. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 7103-7107). IEEE.

Abstract

Though sparse features have produced significant gains over traditional dense features in statistical machine translation, careful feature selection and feature engineering are necessary to avoid overfitting in optimizations.  However, many sparse features are highly overlapping with each other; that is, they cover the same or similar information of translational equivalence from slightly different points of view, and eventually overfit easily with only very feature training samples in given bilingual stochastic context-free grammar (SCFG) rules.  We propose a natural autoencoder that maps all the discrete and overlapping sparse features for each SCFG rule into a continuous vector, so that the information encoded in sparse feature vectors becomes a dense vector that may enjoy more samples during training and avoid overfitting.  Our experiments showed that for a 33 million bilingual SCFG rules statistical machine translation system, the autoencoder generalizes much better than sparse features alone using the same optimization framework.

Index Terms— machine translation, sparse features, SCFG grammar induction, optimization, autoencoder, PRO

↓ Download

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}