• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Artificial intelligence publications June 1, 2000

Multiple-Target Tracking and Data Fusion via Probabilistic Mapping

Citation

Copy to clipboard


Tao, K. M., Abileah, R., and Lowrance, J. D. Multiple-Target Tracking and Data Fusion via Probabilistic MappingFusion via Probabilistic Mapping. Proc. 2000 MSS National Symposium on Sensor and Data Fusion, June 2000.

Abstract

A new approach is taken to address the various aspects of the multi-sensor, multi-target tracking (MTT) problem in dense and noisy environments. Instead of fixing the trackers on the potential targets as the conventional tracking algorithms do, this new approach is fundamentally different in that an array of parallel-distributed “trackers” is laid in the search space. The difficult data-track association problem that has challenged the conventional trackers becomes a nonissue with this new approach. By partitioning the search space into “cells,” this new approach, called PMAP (probabilistic mapping), dynamically calculates the spatial probability distribution of targets in the search space via Bayesian updates. The distribution is spread at each time step, following a fairly general Markov-chain target motion model, to become the prior probabilities of the next scan. This framework can effectively handle data from multiple sensors and incorporate contextual information, such as terrain and weather, by performing a form of evidential reasoning. Used as a pre-filtering device, the PMAP is shown to remove noiselike false alarms effectively, while keeping the target dropout rate very low. This gives the downstream track linker a much easier job to perform. A related benefit is that with PMAP it is now possible to lower the detection threshold and to enjoy high probability of detection and low probability of false alarm at the same time, thereby improving overall tracking performance. The feasibility of using PMAP to track specific targets in an end-game scenario is also demonstrated. Both real and simulated data are used to illustrate the PMAP performance. The PMAP algorithm is parallel distributed in nature; for serial computer implementation, fast algorithms have been developed. Some related applications based
on the PMAP approach, including a spatial–temporal sensor data fusion application and a grayscale video sequence stacking application, are also discussed.

↓ Download

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}