• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Artificial intelligence publications January 1, 2006

Reducing Human Fatigue in Interactive Evolutionary Computation through Fuzzy Systems and Machine Learning Systems

Citation

Copy to clipboard


Kamalian, R. and Yeh, E., and Zhang, Y. and Agogino, A. and Takagi, Hideyuki. Reducing Human Fatigue in Interactive Evolutionary Computation through Fuzzy Systems and Machine Learning Systems, in IEEE International Conference on Fuzzy Systems, 2006.

Abstract

We describe two approaches to reducing human fatigue in interactive evolutionary computation (IEC). A predictor function is used to estimate the human user’s score, thus reducing the amount of effort required by the human user during the evolution process. The fuzzy system and four machine learning classifier algorithms are presented. Their performance in a real-world application, the IEC-based design of a micromachine resonating mass, is evaluated. The fuzzy system was composed of four simple rules, but was able to accurately predict the user’s score 77% of the time on average. This is equivalent to a 51 % reduction of human effort compared to using IEC without the predictor. The four machine learning approaches tested were k-nearest neighbors, decision tree, AdaBoosted decision tree, and support vector machines. These approaches achieved good accuracy on validation tests, but because of the great diversity in user scoring behavior, were unable to achieve equivalent results on the user test data.

↓ Review online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International