Activation of Cortical Interneurons During Sleep: An Anatomical Link to Homeostatic Sleep Regulation?

Citation

Kilduff TS, Cauli B, Gerashchenko D (2011). Activation of Cortical Interneurons During Sleep: An Anatomical Link to Homeostatic Sleep Regulation? Trends in Neurosciences 34 (1):10-19.

Abstract

Although slow wave activity in the EEG has been linked to homeostatic sleep regulation, the neurobiological substrate of sleep homeostasis is not well understood. Whereas cortical neurons typically exhibit reduced discharge rates during slow wave sleep (SWS), a subpopulation of GABAergic interneurons, which express the enzyme neuronal nitric oxide synthase (nNOS), has recently been found to be activated during SWS. The extent of activation of these nNOS neurons is proportional to homeostatic sleep ‘drive’. These cells are an exception among cortical interneurons in that they are projection neurons. We propose that cortical nNOS neurons are positioned to influence neuronal activity across widespread brain areas. They could thus provide a long-sought anatomical link for understanding homeostatic sleep regulation.


Read more from SRI

  • An arid, rural Nevada landscape

    Can AI help us find valuable minerals?

    SRI’s machine learning-based geospatial analytics platform, already adopted by the USGS, is poised to make waves in the mining industry.

  • Two students in a computer lab

    Building a lab-to-market pipeline for education

    The SRI-led LEARN Network demonstrates how we can get the best evidence-based educational programs to classrooms and students.

  • Code reflected in a man's eyeglasses

    LLM risks from A to Z

    A new paper from SRI and Brazil’s Instituto Eldorado delivers a comprehensive update on the security risks to large language models.