• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Biomedical sciences publications October 1, 2013

Multiple CNS Nicotinic Receptors Mediate L-Dopa-Induced Dyskinesias: Studies with Parkinsonian Nicotinic Receptor Knockout Mice

Citation

Copy to clipboard


Quik, M., Campos, C., & Grady, S. R. (2013). Multiple CNS nicotinic receptors mediate L-dopa-induced dyskinesias: Studies with parkinsonian nicotinic receptor knockout mice. Biochemical Pharmacology. doi: 10.1016/j.bcp.2013.06.027

Abstract

Accumulating evidence supports the idea that drugs acting at nicotinic acetylcholine receptors (nAChRs) may be beneficial for Parkinson’s disease, a neurodegenerative movement disorder characterized by a loss of nigrostriatal dopaminergic neurons. Nicotine administration to parkinsonian animals protects against nigrostriatal damage. In addition, nicotine and nAChR drugs improve l-dopa-induced dyskinesias, a debilitating side effect of l-dopa therapy which remains the gold-standard treatment for Parkinson’s disease. Nicotine exerts its antidyskinetic effect by interacting with multiple nAChRs. One approach to identify the subtypes specifically involved in l-dopa-induced dyskinesias is through the use of nAChR subunit null mutant mice. Previous work with β2 and α6 nAChR knockout mice has shown that α6β2* nAChRs were necessary for the development/maintenance of l-dopa-induced abnormal involuntary movements (AIMs). The present results in parkinsonian α4 nAChR knockout mice indicate that α4β2* nAChRs also play an essential role since nicotine did not reduce l-dopa-induced AIMs in such mice. Combined analyses of the data from α4 and α6 knockout mice suggest that the α6α4β2β3 subtype may be critical. In contrast to the studies with α4 and α6 knockout mice, nicotine treatment did reduce l-dopa-induced AIMs in parkinsonian α7 nAChR knockout mice. However, α7 nAChR subunit deletion alone increased baseline AIMs, suggesting that α7 receptors exert an inhibitory influence on l-dopa-induced AIMs. In conclusion, α6β2*, α4β2* and α7 nAChRs all modulate l-dopa-induced AIMs, although their mode of regulation varies. Thus drugs targeting one or multiple nAChRs may be optimal for reducing l-dopa-induced dyskinesias in Parkinson’s disease.

↓ View online

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}