• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Biomedical sciences publications July 1, 2008

Shock Veins in L6 Chondrites and Constraints on the Impact History of the L6 Parent Body

Citation

Copy to clipboard


Sharp, T. G., Xie, Z., & De Carli, P. S. (2008). Shock veins in L6 chondrites and constraints on the impact history of the L6 parent body. Meteoritics and Planetary Science Supplement, 43, 5317.

Introduction

High-pressure minerals that occur in and adjacent to shock-induced melt veins in chondrites provide constraints on the pressures and temperatures of shock metamorphism in these samples [1-3]. The duration of the shock pulse in such samples can be constrained by either using silicatetransformation kinetics [4-6] or by modeling melt vein cooling [1, 7-8]. Impact velocities and impactor sizes can be calculated from pressure and duration data using simple planar-shock-wave approximations [8] or by hydrodynamic calculations [9]. In this study we use hydrodynamic calculations to explore possible impact conditions and sample locations on the L6 parent body for the highly shocked L6 chondrite RC106 [10].


Results

The melt vein in RC106 is 1.3 mm to 4-mm wide with a crystallization assemblage consisting of majorite garnet plus magnesiowüstite. There are two important features of this assemblage: 1) the mineralogy is constant throughout the veins, implying that melt-vein crystallization occurred under near isobaric conditions between 18 and 25 GPa; and 2) the vein contains a textural transition from large equant majorite garnets (up to 30- µm wide) in the vein center to finely dendritic majorite near the melt-vein edge. These textures are consistent with rapid cooling of the vein margin by conduction to a relatively cool host rock. Melt-vein cooling was modeled by assuming a planar melt vein at an initial temperature of 2500 K, surrounded by the solid host rock at 400 K. Using thermal conductivity values of 10 and 3 W/m2, the center of a 1.3-mm melt vein would quench to the solidus in 165 and 550 ms, respectively. To model possible impact scenarios, we assume a spherical L-chondritic impactor striking a much larger L-chondritic body. By placing pressure gauges throughout the model, we can investigate the pressure-time history of any position in the parent body. Assuming a porous surface regolith on the parent body, a 4km/s impact with a 10 km chondritic object can produce an RC106-like shock pulse for a sample at 8 km depth in the Lchondrite parent body.

↓ View online

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}