• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Biomedical sciences publications February 1, 2007

SR 16435 [1-(1-(Bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a Novel Mixed Nociceptin/Orphanin FQ/μ-Opioid Receptor Partial Agonist: Analgesic and Rewarding Properties in Mice

Citation

Copy to clipboard


Taline V. Khroyan, Nurulain T. Zaveri, Willma E. Polgar, Juan Orduna, Cris Olsen, Faming Jiang and Lawrence Toll Journal of Pharmacology and Experimental Therapeutics February 1, 2007, 320 (2) 934-943; DOI: https://doi.org/10.1124/jpet.106.111997

Abstract

We identified a novel nociceptin/orphanin FQ (NOP)/μ-opioid receptor agonist, SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], with high binding affinity and partial agonist activity at both receptors. It was hypothesized that SR 16435 would produce antinociception and yet, unlike morphine, would have diminished rewarding properties and tolerance development. Antinociception was assessed in mice using the tail-flick assay, whereas behavioral and rewarding effects were assessed using the place conditioning (PC) paradigm. PC was established by pairing drug injections with a distinct compartment. Behavioral effects were measured after acute and repeated drug administration, and the test for PC was carried out 24 h after four drug- and vehicle-pairing sessions. SR 16435 produced an increase in tail-flick latency, but SR 16435-induced antinociception was lower than that observed with morphine. Given that naloxone blocked SR 16435-induced antinociception, it is highly likely that this effect was mediated by μ-opioid receptors. Compared with morphine, chronic SR 16435 treatment resulted in reduced development of tolerance to its antinociceptive effects. SR 16435-induced conditioned place preference (CPP) was evident, an effect that was probably mediated via μ-opioid receptors, as it was reversed by coadministration of naloxone. NOP agonist activity was also present, given that SR 16435 decreased global activity, and this effect was partially reversed with the selective NOP antagonist, SR 16430 [1-(cyclooctylmethyl)-4-(3-(trifluoromethyl)phenyl)piperidin-4-ol]. Naloxone, however, also reversed the SR 16435-induced decrease in activity, indicating that both opioid and NOP receptors mediate this behavior. In summary, the mixed NOP/μ-opioid partial agonist SR 16435 exhibited both NOP and μ-opioid receptor-mediated behaviors.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International