• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Biomedical sciences publications November 1, 2013 Conference Paper

Varenicline Markedly Decreases Antipsychotic-Induced Tardive Dyskinesia in a Rodent Model

Citation

Copy to clipboard


Bordia, T., Carroll, F. I., & Quik, M. (2013, 9-13 November). Varenicline markedly decreases antipsychotic-induced tardive dyskinesia in a rodent model. Paper presented at the Neuroscience 2013, San Diego, CA.

Abstract

Tardive dyskinesia is a potentially irreversible drug-induced movement disorder that arises as a side effect of antipsychotic therapy. Antipsychotics form the mainstay of treatment for schizophrenia and bipolar disorder and, in addition, are increasingly being prescribed for major depressive disorder, autism, attention deficit hyperactivity disorder, obsessive compulsive disorder and post-traumatic stress disorder. There is therefore a clear need for therapies to reduce tardive dyskinesia. Our recent studies showed that nicotine administration decreased haloperidol-induced vacuous chewing movements (VCMs) in a rat model of tardive dyskinesia. The present experiments demonstrate that nicotine (300 µg/ml in drinking water) also reduced VCMs (50%) in mice whether haloperidol was given via constant infusion (subcutaneous pellet) or daily injection. The nicotine-mediated decline is thus observed across species using various haloperidol treatment regimens. We then tested the effect of varenicline, an agonist that interacts with multiple nicotinic receptor subtypes. Low dose varenicline (0.1 mg/kg) decreased haloperidol-induced VCMs to a much greater extent (~90%) than nicotine (~50%). Since varenicline also acts at serotonergic receptors, we tested the effect of nicotine in combination with a selective serotonergic receptor drug 8-OH-DPAT (0.3 mg/kg). Nicotine or 8-OH-DPAT treatment alone decreased haloperidol-induced VCMs by ~60%, while combined administration reduced VCMs to a significantly greater extent than either drug alone (83%). These data are the first to show that drugs acting at both nicotinic and serotonergic receptors result in a pronounced decline in antipsychotic-induced VCMs. Drugs such as varenicline that act at both receptors may thus represent a novel therapy for reducing tardive dyskinesia.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International