• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Cyber & formal methods publications August 1, 2013

Large-Scale Access Scheduling in Wireless Mesh Networks Using Social Centrality

Carolyn Talcott

Citation

Copy to clipboard


Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. Journal of Parallel and Distributed Computing, 73(8), 1049-1065. doi: http://dx.doi.org/10.1016/j.jpdc.2013.03.011

Abstract

Wireless mesh networking is an economic and convenient way to provide last mile Internet access through ad hoc peer-to-peer communication links. However, without systematic network configuration and channel resource management, these networks suffer from scalability, performance degradation and service disruption issues due to overwhelming co-channel interference, unscrupulous channel utilization and inherent network mobility. The IEEE 802.11 DCF and EDCA mechanisms based on CSMA/CA are the most widely used random channel access mechanisms, but unfortunately these cannot effectively eliminate hidden terminal and exposed terminal problems in multi-hop scenarios. Social network analysis techniques proposed for economic and social studies have recently been shown to be a successful approach for characterizing information propagation in multi-hop wireless networks. We propose a set of efficient resource allocation algorithms and channel access scheduling protocols based on Latin squares and social centrality metrics for wireless mesh networks (WMNs) with multi-radio multi-channel (MRMC) communication capabilities, called LaSo, which can coexist with IEEE 802.11 DCF and be effectively applied in large scale WMNs. Based on interference information provided by the interference graph, LaSo uses nodal degree centrality to form cliques for intra-cluster communication, and betweenness centrality to choose bridge nodes to form cliques for inter-cluster communication in WMNs, and then applies Latin squares to map the clique-based clustering structure to radios and channels for wireless communication purposes. Afterwards, LaSo again applies Latin squares to schedule the channel access amongst nodes within each cluster in a collision-free manner. We evaluate LaSo using simulations, and results show that LaSo achieves much better performance than existing IEEE 802.11 standards and other multi-channel access control protocols.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
View preferences
{title} {title} {title}