• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Education & learning publications January 1, 2007

Analyzing Fine-Grained Skill Models Using Bayesian And Mixed Effect Methods

Citation

Copy to clipboard


Pardos, Z., Feng, M., Heffernan, N. T., & Heffernan-Lindquist, C. (2007).Analyzing fine-grained skill models using bayesian and mixed effect methods. In Luckin & Koedinger (Eds.) Proceedings of the 13th Conference on Artificial Intelligence in Education (pp. 626-628). Amsterdam, Netherlands: IOS Press.

Abstract

Two modeling methods were employed to answer the same research question of how accurate the various grained models with 1, 5, 39 and 106 skills are at assessing student knowledge in the ASSISTment online tutoring system and predicting their performance on the 2005 state MCAS test. One method, used by the second author, is mixed-effects statistical modeling. The first author evaluated the problem with a Bayesian networks machine learning approach. We compare the two results to identify benefits and drawbacks of either method and to find out if the two results agree. We report that both methods showed compelling similarity in results especially with regard to residuals on the test. Our analysis of these residuals and our online skills allows us to better understand our model and conclude with recommendations for improving the tutoring system, as well as implications for state testing programs.

↓ Review online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International