• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
STEM and computer science education publications October 1, 2001

Can Prosody Aid the Automatic Processing of Multi-Party Meetings? Evidence from Predicting Punctuation, Disfluencies,and Overlapping Speech

Citation

Copy to clipboard


Shriberg, E., Stolcke, A., & Baron, D. (2001). Can Prosody Aid the Automatic Processing of Multi-Party Meetings? Evidence from Predicting Punctuation, Dis uencies, and Overlapping Speech. In ISCA Tutorial and Research Workshop (ITRW) on Prosody in Speech Recognition and Understanding.

Abstract

We investigate whether probabilistic modeling of prosody can aid various automatic labeling tasks essential for processing of multi-party meetings. Task 1, automatic punctuation, seeks to classify sentence boundaries and disfluencies. Task 2, jumpin points, predicts locations within foreground speech at which background speakers start talking; Task 3, jump-in words, examines characteristics of the speech they use to do so. Data are from the ICSI Meeting Recorder corpus. To infer inherent cues, analyses are based on close-talking microphone signals and recognizer forced alignments. As a generous baseline for word-level cues, we compare prosodic models to those of a language model given the true words. Results for Task 1 show prosody reduces classification error by 10% relative over the cheating language model; furthermore when this task is run in “online” mode the prosodic model degrades less than does the language model. For Task 2, the language model provides no information, while the prosodic model reduces entropy by 13% over chance. For Task 3, a prosodic model reduces entropy by 25% over chance. Analyses also show interesting prosodic patterns, which differ over tasks. Task 1 uses cues similar to those for Switchboard (but not Broadcast News) data. Task 2 predicts jump-in points that look prosodically like sentence boundaries but that are not actually such boundaries. And Task 3 shows that speakers “raise” their voice when starting during another’s talk, compared to starting during silence. These results provide evidence that prosodic modeling can be of use for the automatic processing of meetings. Further results and implications for future automatic meeting processing systems are discussed.

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International