Electronic structure and mobility of alkylated and nonalkylated organic semiconductors: role of van der Waals interactions

Citation

Northrup, J. E.; Xie, W.; Sun, Y.; Zhang, S. Electronic structure and mobility of alkylated and nonalkylated organic semiconductors: role of van der Waals interactions. Applied Physics Express. 2013; 6; 071601.

Abstract

We present a comparison based on first-principles calculations of the electronic structure of nonalkylated and alkylated dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene: DNTT and DNTT-C10. The calculations show that the addition of alkyl chains decreases intermolecular distances, in agreement with experiments. Calculations indicate that effective masses are reduced by the addition of alkyl chains, and within a simple deformation potential model, this translates into higher mobility for DNTT-C10. The shorter intermolecular distances found in DNTT-C10 are attributed to van der Waals interactions between alkyl chains.


Read more from SRI

  • A rendering of the Parker Solar Probe inside the sun's corona.

    Parker Solar Probe: Our closest look at the sun

    SRI imaging technology supports a record-shattering NASA mission.

  • A photo of Mary Wagner

    Recognizing the life and work of Mary Wagner 

    A cherished SRI colleague and globally respected leader in education research, Mary Wagner leaves behind an extraordinary legacy of groundbreaking work supporting children and youth with disabilities and their families.

  • Testing XRGo in a robotics laboratory

    Robots in the cleanroom

    A global health leader is exploring how SRI’s robotic telemanipulation technology can enhance pharmaceutical manufacturing.