• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Information & computer science publications September 1, 2009 Journal Article

An anticorrelation kernel for subsystem training in multiple classifier systems

SRI International September 1, 2009

Citation

Copy to clipboard


L. Ferrer, K. Sonmez and E. Shriberg, “An anticorrelation kernel for subsystem training in multiple classifier systems,” Journal of Machine Learning Research, vol. 10, pp. 2079–2114, September 2009.

Abstract

We present a method for training support vector machine (SVM)-based classification systems for combination with other classification systems designed for the same task. Ideally, a new system should be designed such that, when combined with existing systems, the resulting performance is optimized. We present a simple model for this problem and use the understanding gained from this analysis to propose a method to achieve better combination performance when training SVM systems. We include a regularization term in the SVM objective function that aims to reduce the average class-conditional covariance between the resulting scores and the scores produced by the existing systems, introducing a trade-off between such covariance and the system’s individual performance. That is, the new system “takes one for the team”, falling somewhat short of its best possible performance in order to increase the diversity of the ensemble. […]Jour

Share this

Facebooktwitterlinkedinmail

Information & computer science publications, Publication Journal Article

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International