Overcoming Adverse Weather Conditions with a Common Optical Path, Multiple Sensors, and Intelligent Image Fusion System

SRI author:


Ng, J., Piacentino, M., & Caldwell, B. (April 14, 2008). “Overcoming adverse weather conditions with a common optical path, multiple sensors, and intelligent image fusion system”, Proc. SPIE 6946, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications V, 694605


Mission success is highly dependent on the ability to accomplish Surveillance, Situation Awareness, Target Detection and Classification, but is challenging under adverse weather conditions. This paper introduces an engineering prototype to address the image collection challenges using a Common Optical Path, Multiple Sensors and an Intelligent Image Fusion System, and provides illustrations and sample fusion images. Panavision’s advanced wide spectrum optical design has permitted a suite of imagers to perform observations through a common optical path with a common field of view, thereby aligning images and facilitating optimized downstream image processing. The adaptable design also supports continuous zoom or Galilean lenses for multiple field of views. The Multiple Sensors include: (1) High-definition imaging sensors that are small, have low power consumption and a wide dynamic range; (2) EMCCD sensors that transition from daylight to starlight, even under poor weather conditions, with sensitivity down to 0.00025 Lux; and (3) SWIR sensors that, with the advancement in InGaAs, are able to generate ultra-high sensitivity images from 1-1.7μm reflective light and can achieve imaging through haze and some types of camouflage. The intelligent fusion of multiple sensors provides high-resolution color information with previously impossible sensitivity and contrast. With the integration of Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs), real-time Image Processing and Fusion Algorithms can facilitate mission success in a small, low power package.

Read more from SRI