• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Information & computer science publications May 1, 2014 Conference Paper

Tripod Fall: Concept and Experiments of a Novel Approach to Humanoid Robot Fall Damage Reduction

Citation

Copy to clipboard


Yun, S.-k., & Goswami, A. (2014, 31 May – 7 June). Tripod fall: Concept and experiments of a novel approach to humanoid robot fall damage reduction. Paper presented at the IEEE International Conference on Robotics and Automation (ICRA’14), Hong Kong, China.

Abstract

This paper addresses a new control strategy to reduce the damage to a humanoid robot during a fall. Instead of following the traditional approach of finding a favorable configuration with which to fall to the ground, this method attempts to stop the robot from falling all the way to the ground. This prevents the full transfer of the robot’s potential energy to kinetic energy, and consequently results in a milder impact. The controlled motion of the falling robot involves a sequence of three deliberate contacts to the ground with the swing foot and two hands, in that order. In the final configuration the robot’s center of mass (CoM) remains relatively high from the floor and the robot has a relatively stable three-point contact with the ground; hence the name tripod fall. The optimal location of the three contacts are learned through reinforcement learning algorithm. The controller is simulated on a full size humanoid, and experimentally tested on the NAO humanoid robot. In this work we apply our fall controller only to a forward fall.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International