• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
National security publications June 1, 2014 Article

A Framework for Application of Metabolic Modeling in Yeast to Predict the Effects of Nssnv in Human Orthologs

SRI International, David Weaver, Peter Karp June 1, 2014

SRI Authors: David Weaver, Peter Karp

Citation

Copy to clipboard


Dingerdissen, H., Weaver, D. S., Karp, P. D., Pan, Y., Simonyan, V., & Mazumder, R. (2014). A framework for application of metabolic modeling in yeast to predict the effects of nsSNV in human orthologs. Biology Direct, 9, 9. doi: 10.1186/1745-6150-9-9

Abstract

Background

We have previously suggested a method for proteome wide analysis of variation at functional residues wherein we identified the set of all human genes with nonsynonymous single nucleotide variation (nsSNV) in the active site residue of the corresponding proteins. 34 of these proteins were shown to have a 1:1:1 enzyme:pathway:reaction relationship, making these proteins ideal candidates for laboratory validation through creation and observation of specific yeast active site knock-outs and downstream targeted metabolomics experiments. Here we present the next step in the workflow toward using yeast metabolic modeling to predict human metabolic behavior resulting from nsSNV.

Results

For the previously identified candidate proteins, we used the reciprocal best BLAST hits method followed by manual alignment and pathway comparison to identify 6 human proteins with yeast orthologs which were suitable for flux balance analysis (FBA). 5 of these proteins are known to be associated with diseases, including ribose 5-phosphate isomerase deficiency, myopathy with lactic acidosis and sideroblastic anaemia, anemia due to disorders of glutathione metabolism, and two porphyrias, and we suspect the sixth enzyme to have disease associations which are not yet classified or understood based on the work described herein.

Conclusions

Preliminary findings using the Yeast 7.0 FBA model show lack of growth for only one enzyme, but augmentation of the Yeast 7.0 biomass function to better simulate knockout of certain genes suggested physiological relevance of variations in three additional proteins. Thus, we suggest the following four proteins for laboratory validation: delta-aminolevulinic acid dehydratase, ferrochelatase, ribose-5 phosphate isomerase and mitochondrial tyrosyl-tRNA synthetase. This study indicates that the predictive ability of this method will improve as more advanced, comprehensive models are developed. Moreover, these findings will be useful in the development of simple downstream biochemical or mass-spectrometric assays to corroborate these predictions and detect presence of certain known nsSNVs with deleterious outcomes. Results may also be useful in predicting as yet unknown outcomes of active site nsSNVs for enzymes that are not yet well classified or annotated.

↓ View online

Share this

Facebooktwitterlinkedinmail

Artificial intelligence publications, National security publications, Publication Article

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International