• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications January 1, 1994

Context Connectionist Probability Estimation in a Hybrid Hidden Markov Model-Neural Net Speech Recognition Systems

Citation

Copy to clipboard


Franco, H., Cohen, M., Morgan, N., Rumelhart, D., & Abrash, V. (1994). Context-dependent connectionist probability estimation in a hybrid hidden Markov model-neural net speech recognition system. Computer Speech & Language, 8(3), 211-222.

Abstract

In this paper we present a training method and a network architecture for estimating context-dependent observation probabilities in the framework of a hybrid hidden Markov model (HMM) / multi layer perceptron (MLP) speaker-independent continuous speech recognition system. The context-dependent modeling approach we present here computes the HMM context-dependent observation probabilities using a Bayesian factorization in terms of context-conditioned posterior phone probabilities which are computed with a set of MLPs, one for every relevant context. The proposed network architecture shares the input-to-hidden layer among the set of context-dependent MLPs in order to reduce the number of independent parameters. Multiple states for phone models with different context dependence for each state are used to model the different context effects at the beginning and end of phonetic segments. A new training procedure that ‘‘smooths’’ networks with different degrees of context-dependence is proposed to obtain a robust estimate of the context-dependent probabilities. We have used this new architecture to model generalized biphone phonetic contexts. Tests with the speaker-independent DARPA Resource Management data base have shown average reductions in word error rates of 28% using a word-pair grammar, compared to our earlier context-independent HMM/MLP hybrid.

↓ Download

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}