fMPE-MAP: Improved Discriminative Adaptation for Modeling New Domains

Citation

Zheng, J., & Stolcke, A. (2007, August). fMPE-MAP: improved discriminative adaptation for modeling new domains. In INTERSPEECH (pp. 1573-1576).

Abstract

Maximum a posteriori (MAP) adaptation and its discriminative variants, such as MMI-MAP (maximum mutual information MAP) and MPE-MAP (minimum phone error MAP), have been widely applied to acoustic model adaptation. This paper introduces a new adaptation approach, fMPE-MAP, which is an extension to the original fMPE (feature minimum phone error) algorithm, with the enhanced ability in porting Gaussian models and fMPE transforms to a new domain. We applied this approach to the SRI-ICSI 2007 NIST meeting recognition system, for which we ported our conversational telephone speech (CTS) and broadcast news (BN) models to the meeting domain. Experiments showed that the proposed fMPE-MAP approach has comparable or better performance than simply training the fMPE transform on combined data, in addition to the obvious speed advantage. In combination with MPE-MAP, we obtained about 20% relative word error rate reduction on a lecture meeting evaluation test set, over the models trained with the standard MAP approach.

Index Terms: adaptation, MAP, MPE, fMPE, meeting recognition


Read more from SRI

  • An arid, rural Nevada landscape

    Can AI help us find valuable minerals?

    SRI’s machine learning-based geospatial analytics platform, already adopted by the USGS, is poised to make waves in the mining industry.

  • Two students in a computer lab

    Building a lab-to-market pipeline for education

    The SRI-led LEARN Network demonstrates how we can get the best evidence-based educational programs to classrooms and students.

  • Code reflected in a man's eyeglasses

    LLM risks from A to Z

    A new paper from SRI and Brazil’s Instituto Eldorado delivers a comprehensive update on the security risks to large language models.