• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications July 1, 2009 Journal Article

Generative and discriminative methods using morphological information for sentence segmentation of Turkish

Citation

Copy to clipboard


U. Guz, B. Favre, D. Hakkani-Tur and G. Tur, “Generative and discriminative methods using morphological information for sentence segmentation of Turkish,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, pp. 895–903, July 2009.

Abstract

This paper presents novel methods for generative, discriminative, and hybrid sequence classification for segmentation of Turkish word sequences into sentences. In the literature, this task is generally solved using statistical models that take advantage of lexical information among others. However, Turkish has a productive morphology that generates a very large vocabulary, making the task much harder. In this paper, we introduce a new set of morphological features, extracted from words and their morphological analyses. We also extend the established method of hidden event language modeling (HELM) to factored hidden event language modeling (fHELM) to handle morphological information. In order to capture non-lexical information, we extract a set of prosodic features, which are mainly motivated from our previous work for other languages. […]

↓ Download

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International