Reranking Machine Translation Hypotheses With Structured and Web-based Language Models


Wang, W., Stolcke, A., & Zheng, J. (2007, December). Reranking machine translation hypotheses with structured and web-based language models. In 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU) (pp. 159-164). IEEE.


In this paper, we investigate the use of linguistically motivated and computationally efficient structured language models for reranking N-best hypotheses in a statistical machine translation system. Two structured language models are applied for N-best rescoring, one is an almost-parsing language model, and the other utilizes more syntactic features by explicitly modeling syntactic dependencies between words. We also investigate effective and efficient language modeling methods to use N-grams extracted from up to 1 teraword of web documents. We apply all these language models for N-best re-ranking on the NIST and DARPA GALE program 2006 and 2007 machine translation evaluation tasks and find that the combination of these language models increases the BLEU score up to 1.6% absolutely on blind test sets.

Read more from SRI