• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Publication November 1, 2011

Synthesizing Switching Logic Using Constraint Solving

Citation

Copy to clipboard


Taly, A., Gulwani, S. & Tiwari, A. Synthesizing switching logic using constraint solving. Int J Softw Tools Technol Transfer 13, 519–535 (2011). https://doi.org/10.1007/s10009-010-0172-8

Abstract

For a system that can operate in multiple different modes, we define the switching logic synthesis problem as follows: given a description of the dynamics in each mode of the system, find the conditions for switching between the modes so that the resulting system satisfies some desired properties. In this paper, we present an approach for solving the switching logic synthesis problem in the case when (1) the dynamics in each mode of the system are given using differential equations and, hence, the synthesized system is a hybrid system, and (2) the desired property is a safety property. Our approach for solving the switching logic synthesis problem, called the constraint-based approach, consists of two steps. In the first constraint generation step, the synthesis problem is reduced to satisfiability of a quantified formula over the theory of reals. In the second constraint solving step, the quantified formula is solved. This paper focuses on constraint generation. The constraint generation step is based on the concept of a controlled inductive invariant. The search for controlled inductive invariant is cast as a constraint solving problem. The controlled inductive invariant is then used to arrive at the maximally liberal switching logic. We prove that the synthesized switching logic always gives us a well-formed and safe hybrid system. When the system, the safety property, and the controlled inductive invariant are all expressed only using polynomials, the generated constraint is an ∃∀ formula in the theory of reals, whose satisfiability is decidable.

Keywords: Formal methods, Controller synthesis, Hybrid systems.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
View preferences
{title} {title} {title}