• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Computational sensing-low-power processing publications October 14, 2022

Low-Power In-Pixel Computing with Current-Modulated Switched Capacitors

David Zhang, Gooitzen van der Wal, Michael A. Isnardi, Michael Piacentino

Citation

Copy to clipboard


David Zhang, Gooitzen van der Wal, Saurabh Farkya, Thomas Senko, Aswin Raghavan, Michael Isnardi, Michael Piacentino (2022) CVPR 2022 / ECV 2022, New Orleans, LA, June 19-20, 2022

Abstract

We present a scalable in-pixel processing architecture that can reduce the data throughput by 10X and consume less than 30 mW per megapixel at the imager frontend. Unlike the state-of-the-art (SOA) analog process-in-pixel (PIP) that modulates the exposure time of photosensors when performing matrix-vector multiplications, we use switched capacitors and pulse width modulation (PWM). This non-destructive approach decouples the sensor exposure and computing, providing processing parallelism and high data fidelity. Our design minimizes the computational complexity and chip density by leveraging the patch-based feature extraction that can perform as well as the CNN. We further reduce data using partial observation of the attended objects, which performs closely to the full frame observations. We have been studying the reduction of output features as a function of accuracy, chip density and power consumption from a transformer-based backend model for object classification and detection.

↓ Review online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International