• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Information & computer science publications May 1, 2015 Chapter

Anomaly Detection and Diagnosis for Automatic Radio Network Verification

SRI International May 1, 2015

Citation

Copy to clipboard


Ciocarlie, G. F., Connolly, C., Cheng, C.-C., Lindqvist, U., Nov·czki, S., Sanneck, H., & Naseer-ul-Islam, M. (2015). Anomaly detection and diagnosis for automatic radio network verification. In R. Ag¸ero, T. Zinner, R. Goleva, A. Timm-Giel & P. Tran-Gia (Eds.), Mobile Networks and Management (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Vol. 141, pp. 163-176): Springer International Publishing.

Abstract

The concept known as Self-Organizing Networks (SON) has been developed for modern radio networks that deliver mobile broadband capabilities. In such highly complex and dynamic networks, changes to the configuration management (CM) parameters for network elements could have unintended effects on network performance and stability. To minimize unintended effects, the coordination of configuration changes before they are carried out and the verification of their effects in a timely manner are crucial. This paper focuses on the verification problem, proposing a novel framework that uses anomaly detection and diagnosis techniques that operate within a specified spatial scope. The aim is to detect any anomaly, which may indicate actual degradations due to any external or system-internal condition and also to characterize the state of the network and thereby determine whether the CM changes negatively impacted the network state. The results, generated using real cellular network data, suggest that the proposed verification framework automatically classifies the state of the network in the presence of CM changes, indicating the root cause for anomalous conditions.

↓ View online

Share this

Facebooktwitterlinkedinmail

Information & computer science publications, Publication Chapter

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International