• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Information & computer science publications May 1, 2014 Conference Paper

Highly Accurate Phonetic Segmentation Using Boundary Correction Models and System Fusion

SRI International May 1, 2014

Citation

Copy to clipboard


Stolcke, A., Ryant, N., Mitra, V., Yuan, J., Wang, W., & Liberman, M. (2014, 4-9 May). Highly accurate phonetic segmentation using boundary correction models and system fusion. Paper presented at the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’14), Florence, Italy.

Abstract

Accurate phone-level segmentation of speech remains an important task for many subfields of speech research. We investigate techniques for boosting the accuracy of automatic phonetic segmentation based on HMM acoustic-phonetic models. In prior work we were able to improve on state-of-the-art alignment accuracy by employing special phone boundary HMM models, trained on phonetically segmented training data, in conjunction with a simple boundary-time correction model. Here we present further improved results by using more powerful statistical models for boundary correction that are conditioned on phonetic context and duration features. Furthermore, we find that combining multiple acoustic front-ends gives additional gains in accuracy, and that conditioning the combiner on phonetic context and side information helps. Overall, we reduce segmentation errors on the TIMIT corpus by almost one half, from 93.9% to 96.8% boundary accuracy with a 20-ms tolerance.

↓ View online

Share this

Facebooktwitterlinkedinmail

Information & computer science publications, Publication Conference Paper

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International