• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Information & computer science publications October 1, 2009 Conference Paper

Pedestrian Detection with Depth-Guided Structure Labeling

SRI International October 1, 2009

Citation

Copy to clipboard


Bansal, M., Matei, B., Sawhney, H.S., Jung, S., & Eledath, J., (Sept. 27 2009-Oct. 4 2009). “Pedestrian detection with depth-guided structure labeling,” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, vol., no., pp.31,38.

Abstract

We propose a principled statistical approach for using 3D information and scene context to reduce the number of false positives in stereo based pedestrian detection. Current pedestrian detection algorithms have focused on improving the discriminability of 2D features that capture the pedestrian appearance, and on using various classifier architectures. However, there has been less focus on exploiting the geometry and spatial context in the scene to improve pedestrian detection performance. We make several contributions: (i) we define a new 3D feature, called a Vertical Support Histogram, from dense stereo range maps to locally characterize 3D structure; (ii) we estimate the likelihoods of these 3D features using kernel density estimation, and use them within a Markov Random Field (MRF) to enforce spatial constraints between the features, and to obtain the Maximum A-Posteriori (MAP) scene labeling; (iii) we employ the MAP scene labelings to reduce the number of candidate windows that are tested by a standard, state-of-the-art pedestrian appearance classifier. We evaluate our algorithm on a very challenging, publicly available stereo dataset and compare the performance with state-of-the-art methods.

↓ View online

Share this

Facebooktwitterlinkedinmail

Information & computer science publications, National security publications, Publication Conference Paper

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International