• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Information & computer science publications June 1, 2007

Visual Odometry System Using Multiple Stereo Cameras and Inertial Measurement Unit

Rakesh Kumar, Supun Samarasekera

Citation

Copy to clipboard


Oskiper, T., Zhu, Z., Samarasekera, S., & Kumar, R., (June 2007). “Visual Odometry System Using Multiple Stereo Cameras and Inertial Measurement Unit,” Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, vol., no., pp.1,8, 17-22.

Abstract

Over the past decade, tremendous amount of research activity has focused around the problem of localization in GPS denied environments. Challenges with localization are highlighted in human wearable systems where the operator can freely move through both indoors and outdoors. In this paper, we present a robust method that addresses these challenges using a human wearable system with two pairs of backward and forward looking stereo cameras together with an inertial measurement unit (IMU). This algorithm can run in real-time with 15 Hz update rate on a dual-core 2 GHz laptop PC and it is designed to be a highly accurate local (relative) pose estimation mechanism acting as the front-end to a simultaneous localization and mapping (SLAM) type method capable of global corrections through landmark matching. Extensive tests of our prototype system so far, reveal that without any global landmark matching, we achieve between 0.5% and 1% accuracy in localizing a person over a 500 meter travel indoors and outdoors. To our knowledge, such performance results with a real time system have not been reported before.

↓ View online

Share this

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International