• Skip to primary navigation
  • Skip to main content
SRI logo
  • About
    • Press room
    • Our history
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Search
Close
Speech & natural language publications October 1, 2006

A Study in Machine Learning from Imbalanced Data for Sentence Boundary Detection in Speech

Citation

Copy to clipboard


Liu, Y., Chawla, N. V., Harper, M. P., Shriberg, E., & Stolcke, A. (2006). A study in machine learning from imbalanced data for sentence boundary detection in speech. Computer Speech & Language, 20(4), 468-494.

Abstract

Enriching speech recognition output with sentence boundaries improves its human readability and enables further processing by downstream language processing modules. We have constructed a hidden Markov model (HMM) system to detect sentence boundaries that uses both prosodic and textual information. Since there are more non-sentence boundaries than sentence boundaries in the data, the prosody model, which is implemented as a decision tree classifier, must be constructed to effectively learn from the imbalanced data distribution. To address this problem, we investigate a variety of sampling approaches and a bagging scheme. A pilot study was carried out to select methods to apply to the full NIST sentence boundary evaluation task across two corpora (conversational telephone speech and broadcast news speech), using both human transcriptions and recognition output. In the pilot study, when classifi cation error rate is the performance measure, using the original training set achieves the best performance among the sampling methods, and an
ensemble of multiple classi fiers from different downsampled training sets achieves slightly poorer performance, but has the potential to reduce computational effort. However, when performance is measured using receiver operating characteristics (ROC) or area under the curve (AUC), then the sampling approaches outperform the original training set. This observation is important if the sentence boundary
detection output is used by downstream language processing modules. Bagging was found to signi ficantly improve system performance for each of the sampling methods. The gain from these methods may be diminished when the prosody model is combined with the language model, which is a strong knowledge source for the sentence detection task. The patterns found in the pilot study were replicated in the full NIST evaluation task. The conclusions may be dependent on the task, the classi ers, and the knowledge combination approach.
–: sentence boundary detection, prosody model, sampling, bagging

↓ Download

↓ View online

Share this
Career call to action image

Work with us

Search jobs

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Institute

Leadership

Press room

Media inquiries

Compliance

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter


日本支社
SRI International
  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2023 SRI International
Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}