• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Home » Publication » Quantum publications

Quantum publications

Quantum publications August 19, 2021 Article

Quantum Optimization Heuristics with an Application to Knapsack Problems

Karim Eldefrawy, Nicholas Genise August 19, 2021

This paper introduces two techniques that make the standard Quantum Approximate Optimization Algorithm (QAOA) more suitable for constrained optimization problems. The first technique describes how to use the outcome of a prior greedy classical algorithm to define an initial quantum state and mixing operation to adjust the quantum optimization algorithm to explore the possible answers around this initial greedy solution. The second technique is used to nudge the quantum exploration to avoid the local minima around the greedy solutions. To analyze the benefits of these two techniques we run the quantum algorithm on known hard instances of the Knapsack Problem using unit depth quantum circuits. The results show that the adjusted quantum optimization heuristics typically perform better than various classical heuristics.

Quantum publications March 20, 2021 Article

Portable Magnetometry for Detection of Biomagnetism in Ambient Environments

Sterling McBride March 20, 2021

This paper presents a method of optical magnetometry with parts-per-billion resolution that is able to detect biomagnetic signals generated from the human brain and heart in Earth’s ambient environment. The  magnetically silent sensors measure the total magnetic field by detecting the free-precession frequency in a highly spin-polarized alkali-metal vapor. A first-order gradiometer is formed from two magnetometers that are separated by a 3-cm baseline. The gradiometer operates from a laptop consuming 5 W over a USB port, enabled by state-of-the-art microfabricated alkali-vapor cells, advanced thermal insulation, custom electronics, and compact lasers within the sensor head. The gradiometer has a sensitivity of 16 fT/cm/Hz1/2 outdoors, which we use to detect neuronal electrical currents and magnetic cardiography signals. Recording of neuronal magnetic fields is one of a few available methods for noninvasive functional brain imaging that usually requires extensive magnetic shielding and other infrastructure. This work demonstrates the possibility of a dense array of portable biomagnetic sensors that are deployable in a variety of natural environments.

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our privacy policy
Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International