Distinguishing Deceptive from Non-Deceptive Speech

,

Citation

Hirschberg, J. B., Benus, S., Brenier, J. M., Enos, F., Friedman, S., Gilman, S., … & Shriberg, E. (2005). Distinguishing deceptive from non-deceptive speech.

Abstract

To date, studies of deceptive speech have largely been confined to descriptive studies and observations from subjects, researchers, or practitioners, with few empirical studies of the specific lexical or acoustic/prosodic features which may characterize deceptive speech. We present results from a study seeking to distinguish deceptive from non-deceptive speech using machine learning techniques on features extracted from a large corpus of deceptive and non-deceptive speech. This corpus employs an interview paradigm that includes subject reports of truth vs. lie at multiple temporal scales. We present current results comparing the performance of acoustic/prosodic, lexical, and speaker-dependent features and discuss future research directions.


Read more from SRI

  • An arid, rural Nevada landscape

    Can AI help us find valuable minerals?

    SRI’s machine learning-based geospatial analytics platform, already adopted by the USGS, is poised to make waves in the mining industry.

  • Two students in a computer lab

    Building a lab-to-market pipeline for education

    The SRI-led LEARN Network demonstrates how we can get the best evidence-based educational programs to classrooms and students.

  • Code reflected in a man's eyeglasses

    LLM risks from A to Z

    A new paper from SRI and Brazil’s Instituto Eldorado delivers a comprehensive update on the security risks to large language models.